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Summary

The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide

range (10 to 50 kPa) of loads at temperatures from 25 to 650 °C. The bearings are made from uncoated nickel

based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation.

To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304

is a NiCr based Cr203 coating with silver and barium fluoride/calcium fluoride solid lubricant additions.
The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions

tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load.

The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited

for advanced high temperature, oil-free turbomachinery applications.

Introduction

Foil air beatings have been used successfully in many aerospace applications such as air cycle machines, bleed air

turbocompressors and turbo expanders (refs. I to 4). These applications are characterized by light loads, constant speeds

and low to moderate temperatures. Previous efforts to extend the technology into high load, high temperature applica-

tions have failed due to inadequate load capacity, material capabilities or rotordynamic performance (refs. 5 and 6).

However, recent advances in foil air bearing design have resulted in significant improvements in load capacity, damping

and stiffness performance opening up new possibilities for their application in advanced oil-free turbomachinery (refs. 7

to 9).

High temperature operation, however, continues to be a key obstacle. Foil air beatings float on a self-acting

hydrodynamic air film during normal operation and hence do not experience sliding contact or wear. However,

during start-up and shut down, prior to developing a gas film, sliding occurs and solid lubrication must be provided

to reduce friction and wear. Previous efforts to lubricate foil bearings at high temperatures have been met with lim-

ited success. Bushan et al evaluated a number of foil and journal coatings which, in some cases, allowed operation
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to650°C but life was limited (ref. 10). DellaCorte and Sliney evaluated a chrome carbide journal coating in partial-

arc bearing tests and found good performance but later difficulties were exhibited regarding coating repeatability

and high processing costs (refs. 11 to 13). Due to these and other problems, foil air beating use has been limited to

operation with polymer foil coatings operating below about 300 °C.

Efforts to develop improved tribomaterials for foil beating lubrication are underway at the authors' laboratories.

A new chrome oxide based journal coating, designated PS300, was shown to provide good friction and wear proper-

ties in a partial-arc foil bearing at 500 °C (ref. 14). At room temperature, however, high foil wear was observed

unless a thin ceramic coating was applied to the foil. In addition, journal coating adhesion was poor especially dur-

ing repeated thermal cycles. Subsequent research resulted in a modification to this coating, PS304, which exhibited

excellent adhesion and substantially improved tribological performance in a partial-arc foil bearing (ref. 15). Under

the conditions tested, wear at 25 °C was acceptable yet significantly higher than at elevated temperatures.

The present study extends the partial-arc beating tests of PS304 to advanced design full foil bearings. Particular

emphasis is placed on bearing friction, wear and the effects of temperature and load on wear and performance. The

sliding wear surfaces of full foil beatings are not accessible for conventional surface analyses (microscopy). There-

fore, the reader is referred to previous work with these tribomaterials in partial arc bearings for detailed tribosurface

characterization (refs. 14 and 15).

Apparatus, Materials and Procedures

Foil Bearings

The test foil bearings are nominally 35 nun in diameter, 25 mm long (or wide) and made up of several layers of

nickel-based superalloy foils typically 0.13 mm thick. These foil layers consists of a smooth innermost or top foil

backed by bump foils. The top foil supports the hydrodynamic gas film while the underlying foils provide an elastic

and compliant support structure for the top foil. Figure 1 shows a cross-section schematic of a typical test bearing.

In addition to their role in providing a compliant support, the underlying foils also provide coulomb damping to the

beatings by allowing microsliding to occur between the bumps and adjacent surfaces. The resulting stiffness and

damping characteristics as well as compliance to accommodate centrifugal and thermal distortions and misalignment

are attractive features of foil beatings. Furthermore, judicious design selection of bump heights, pitch, foil thickness

and the location(s) and mean(s) for foil layer attachment allow the tailoring of stiffness and damping performance

for a given application (ref. 16).

Test Journals

The test journals shown in figure 2 are nominally 35 mm long and 35 mm in diameter and made from a nickel-

based superalloy. The journals have a series of twelve equally spaced, threaded holes in the front face to accommo-

date weights for in-place, high speed, dynamic balancing. The journals have a premachined undercut, 0.25 mm deep,

to allow for the deposition of the solid lubricant test coating.

PS304 Test Coating

The foil bearings are lubricated during the sliding experienced at initial start-up and final shut-down by apply-

ing the solid lubricant, PS304, onto the journal surface. PS304 is a nickel-chrome bonded chrome oxide plasma

sprayed composite coating with silver and barium-fluoride/calcium fluoride lubricant additives. The detailed

composition is given in table I and a representative cross-section photomicrograph is shown in figure 3. The nickel-
chrome acts as a binder while the chrome oxide functions as both a hardener and a high temperature lubricant

(ref. 17). Silver is added as a thermochemically stable low temperature lubricant. The fluoride acts as a high
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temperaturelubricant.Asajournal coating, PS304 provided excellent lubrication performance to partial-arc (1/2

circumference) foil bearings at temperatures above 200 °C. Wear at room temperature was substantially higher

(ref. 15). The purpose of the current effort is to further explore the performance of PS304 in lubricating full foil

beatings from 25 to 650 °C and measure the effects of load and temperature on wear.

Test Apparatus/Procedure

For these evaluations, start-stop operation of the test bearings is conducted using the test rig shown in figure 4

and fully described in reference 18. This test rig uses an impulse turbine driven by compressed air to achieve test

speeds up to 70,000 rpm. The rig spindle is supported by ceramic-hybrid ball bearings lubricated by oil jets and

cooled by temperature controlled water. The start/stop test cycle lasts 20 sec and is shown in figure 5. The cycle

begins by turning on the air supply to the turbine. The air pressure then builds until the torque provided by the tur-

bine exceeds the static torque of the test bearing plus any torque contribution of the spindle bearings. Test bearing

torque reaches a peak then sliding begins followed by a reduction in test bearing torque due to the formation of a

lubricating air film. Above about 4,000 rpm the air film is fully developed, no wear occurs, and the friction is

reduced to its lowest value. During the on portion of the cycle the spindle reaches 40,000 rpm at which point the

turbine air supply is shut off allowing the spindle to coast to a stop. As the spindle slows, the test beating torque

gradually climbs as the gas film shear rate increases and at speeds below about 4000 rpm sliding recommences on

the bearing until the spindle comes to a complete stop. The test apparatus is fully instrumented and designed to oper-

ate unattended, 24 hr/day allowing for convenient data collection.

The specimens are heated using quartz tube heating lamps located circumferentially around the bearing. Prox-

imity thermocouples monitor the test temperature and are used for safety and control. Torque is monitored during

the cycle by using a load cell to measure the force required to restrain the bearing from rotation as shown in figure 6.

A static load of 10.1 kPa (1.5 psi) is applied to the bearing using a donut shaped dead weight housing inside which

the bearing is mounted. For some tests, this load is augmented by dead weights hung from a cable beneath the test

rig or through the use of an instrumented pneumatic actuator (fig. 6).
Specimen wear is measured by using micrometers to assess the minimum foil thickness (usually occurring in

the heavily loaded zone at the top of the bearing) and the decrease in journal diameter. Past experience with foil

bearings suggested that performance (load capacity) was degraded when -0.025 mm was worn from either the foil

or journal surface (refs. 10 and 11). More recent evidence from advanced design bearings suggests that the bearings
can continue to provide excellent performance well beyond this point. Therefore, testing of bearings in this program

will continue until either the designated number of start/stop cycles has been reached (typically 30,000) or the foil

surface wears through to an underlying foil layer. 30,000 cycles represents twice the required cycles for many antici-

pated foil bearing applications such as turbochargers and turboalternators.

Due to high specimen costs and long test duration, repeat tests were generally not performed. To assess data
scatter and repeatability, the performance measured here at selected test conditions (e.g. 10.1 kPa load, to 538 °C)

was compared to that collected during earlier work. Good agreement was observed and, therefore, repeat tests were

not performed.

Test Results

The friction and wear data summary for the bearings tested is given in table II. The first group (of five bearings)

shown in the table were tested at a constant 10.1 kPa (1.5 psi) static load while the test temperature was varied from

25 to 650 °C. The tests were run until each bearing had successfully reached over 30,000 start/stop cycles. Start/stop

bearing torque decreased sharply with temperature varying from 238 N-mm at 25 °C to 57 N-mm at 650 °C. Foil

wear ranged from 8 to 18 [am and journal wear ranged from 5 to 20 _tm. No obvious trends of wear with temperature
were observed.

The second group (of three bearings) shown in table II were all tested at 538 °C (1000 OF) under test loads of

20.2, 33.7 and 53.9 kPa. By including the bearing in the first group which was also tested at 538 °C (1000 °F) at a

10.1 kPa load, four tests at this test temperature were performed. Bearing wear, both journal and foil, are plotted in
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figures7and8andrangedfrom15to69pm.Thefiguresshowthelinearityoftheweardatawithloadasexpected.
Torquealsoincreasedwithloadbutisnotasimplelinearrelationshipbecausefourdifferentbearingsweretested
andeachhasaslightlydifferentpreloadlevel,whichconfoundsthedatacomparison.Thistopicwillbediscussed
inmoredetaillater.

Thethirdgroup(offourbearings)shownin tableII wererununderenduranceteststoascertainbearinglife.The
testat25°Cwasdiscontinuedafter48,372cyclesduetoexcessivetopfoilwear.Theelevatedtemperaturetests
werediscontinuedwithoutfailureafter100,000cycles,theprescribedtestsequencelimit.Forallofthesetests,a
highstaticload(33.7kPa)waschosentoacceleratethewearprocess.Bothtorqueandmeasuredwearvaluescor-
roboratedtheshortertestsconductedearlier.

Discussion of Results

Bearing Torque and Friction

The data given in table II clearly show that beating torque increases with load and decreases with temperature.

Bearing torque is the result of the combination of two factors. The first factor is the friction coefficient and the sec-

ond factor is the contact stress between the journal coating and the foil. The contact stress arises from both external

applied loads, such as dead weights, and the spring preloading of the foil against the shaft. All foil bearings are

lightly spring preloaded to maintain shaft concentricity and avoid dynamic instability during start-up. Spring preload

levels are typically 3.0 to 10.0 kPa and therefore can be responsible for a significant proportion of the start-up torque

of a beating supporting a lightweight shaft. For current foil bearing supported turbomachinery, typical deadweight

levels (or start up loads) range from 6.0 to 20.0 kPa.

For the bearing tests conducted here, the preload level at a particular test condition (i.e. temperature) is

unknown. It can be estimated, however, in the following manner. The deadweight load can be varied resulting in

corresponding changes to the measured bearing torque. By carefully conducting start/stop tests under various dead-

weight loads this relation between bearing friction (torque) and deadweight load can be measured. Data of this type

is shown in figure 9 for a beating tested at 25 °C. The data points can be fitted to a straight line whose slope is the

sliding friction coefficient for the bearing/coating tribopair. For this beating, the coefficient is 0.22. This value is

significantly lower than the apparent friction coefficient calculated from a single data point taken under low dead-

weight loading conditions. Table II gives apparent friction values at 25 °C, which range from 1.39 at 10.1 kPa load

to 0,53 at 33.7 kPa load. The discrepancies between the calculated value (0.22) and the apparent values are due to

the spring preload contributions to the friction force. The spring preload contribution can be quite significant

because it is a surface force acting over the entire shaft surface area (I-I × &_ameter × width).

A similar calculation of the friction coefficient can be made at each test condition (temperature). These calcula-

tions are plotted in figures 10 to 13 and tabulated in table HI. As can be seen from this table, calculated friction

coefficients range from 0.25 to 0.16. Correlation coefficients for the straight-line fits are very near 1.0 lending

further credibility to this method of friction coefficient calculation.

Upon closer examination of figure 9, one can see that the fitted friction line can be extrapolated to lower dead-

weight loads as if one were to hypothetically reduce gravity. If gravitational effects were eliminated the line inter-

sects the ordinate at the friction level due only to the spring preload multiplied by the previously calculated friction

coefficient. If this preload induced friction force is then divided by the friction coefficient, the spring preload force
can be calculated.

Table HI shows the preload values for a single bearing operated at 25 to 650 °C after 30,000 start/stop cycles

of operation at 537 °C under a 10,1 kPa load. The data, which is plotted in figure 14, is well behaved and increases

smoothly with test temperature above 204 °C. This change is understandable. The bearing has a spring preload against

the shaft, which is similar to a light interference fit. Since all of the materials (the bearing, housing, journal) have the

same thermal expansion coefficient, as the temperature is increased the preload 0nterference) increases. From the data

(table HI and fig. 14) it appears that the preload pressure increases by a factor of two between 204 and 650 °C.

The data obtained at 25 °C does not fit this explanation. The preload pressure at 25 °C is nearly double that at

650 °C. The reasons for this discrepancy are not exactly known but are likely due to the experimental lab set-up.

For all of the tests above 25 °C, the test beating is heated by the furnace, which maintains the desired ambient test

temperature. For these cases, both the bearing and the journal are at nominally the same temperature.
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At25°C,however,thefurnaceisoff andthebearinghousingisat25°Cwhilefrictionalheatgeneratedinthe
gasfilmquicklyheatstheshafttoover100°C.Becausethethermalmassofthebearinghousingislarge,it remains
at25°C.Therefore,theshaftgrowsbythermalexpansionincreasingthepreloadlevel.Sincethebuilt-inspring
preloadpressuresaresmallcomparedtothepressuresgeneratedbyshaftthermalexpansiondeflectingthe(spring)
bumpfoil layersmallshafttemperatureincreasescanhaveadramaticeffectontotalpreloadpressure.Thisexplains
thehighpreloadvaluecalculatedat25°C.

BearingWear

Foilbeatingswhicharecurrentlyinproductionapplicationssuchasaircyclemachines(ACM's)typicallyuse
thinsoftpolymercoatedfoilsagainsthardcoatedshaftstoreducefrictionandwear.Intheseapplicationswearof
thefoil coatingsarenotwelltoleratedbecauseduringstartupandshutdown,thesameregionsofthefoil surfacerub
ontheshaftcausinglocalizedcoatingwear.Oncethesolidlubricantcoatingonthefoil iswornthroughtothemetal
substrate,frictionincreases,andgallingandseizurecanoccur.Inaddition,sincesoftcoatingsareused,anycon-
taminantsin thesystem(e.g.dust,sand)cancauseabrasionandacceleratewear.

Forthebearingstestedhereadifferentapproachhasbeenemployed.Relativelyhard,thicksolidlubricantcom-
positecoatingsareappliedtothejournalswhichslideagainstuncoatedmetalfoilsduringstartupandshutdown.In
essence,theentiretopfoilthicknessisavailableasasacrificialwearsurfaceandtheentirejournalsurfaceactsasa
solidlubricantreservoir.Nochangeinfrictionperformanceoccursasthecoating/foiltribopairwears.Therefore,the
friction(torque)andloadcapacityofthetestedbearingsdonotchangeoverthedurationofthetests.

Thisapproachtofoilbearinglubricationappearstobesuccessfulasevidencedbybearinglivesinexcessof100,000
cyclesunderhighloadsasshownintableII.Evenafter100,000cycles,thetestbearingloadcapacitywasnotreduced.
Atroomtemperature,wearismuchhigher,resultinginbearingfailure(wearthroughofthetopfoil)after48,000cycles.
Thisresulthasbeenobservedinearlierworkusingapartialarcbearing(ref.15).ClearlythePS304coatingismuch
moreabrasiveat25°Cthanatelevatedtemperatures.Fortunately,mostturbomachineryoperatesat25°Cforonlya
smallpercentageoftheirdutycycles.Thusroomtemperaturewearmaybeasecondaryissue.

Thelinearityintheweardatashownin figures7and8suggestthatthedataobtainedin thisresearchcanbe
usedfordesignlifeguidanceinfutureapplications.Thedatashowthatoverthewiderangeofstaticloadstested
(10to +50kPa),thewearincreasesonlylinearly.Further,theweardatacanbeusedtoaccommodatebearingwear
intothedesignpreloadtoenhancedynamicstabilityoftherotorsystemevenafterlongtermuse.

Concluding Remarks

This paper presents tribological performance and durability data for advanced foil air bearings operating

between 25 and 650 °C. The data clearly show that these bearings perform well over a wide range of static loads

and exhibit wear lives well in excess of what would be required for near or long term applications. The results also

show that some bearing wear is acceptable and can be accommodated through proper beating design. Based upon

the results, these bearings and tribological coatings are well suited for advanced turbomachinery applications such

as turbochargers, auxiliary power units, and gas turbine engines.
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TABLE I.--PS304 COATING COMPOSITION
Constituent wt% Function
NiC_ 60 binder
Cr.,O3 20 hardener
Ag 10 low temperaturelubricant
BaFz]CaF2 b 10 high temperature lubricant
aNiCr is 80Ni/20Cr by wt%.
_BaF.,/CaF,is 62 BaF.,/38CaF.,by wt%.
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TABLE II.--BEARING TRIBODATA SUMMARY

Test Static load,

temperature, kPa,

°C (ps!) ....

25 lO.1 (1.5 L

204 lO.l (1.5!

427 10.1 (1.5)

538 10.1 (1.5)

650 10.1 (1.5)

Number Start/stop

start/stop torque,

cycles N*mm
33,129 238

30,400 124

32,500 104

32,375 • 58
30,000 57

Apparenff Foil wear, Diametral

friction pm journal wear,

coefficent pm
1.39 10 20

0.73 18 5.1

0.61 18 7.6

0.34 18 15

0.33 8 5.1

0.45 [ 25 28

0.41 ] 30 360.29 38 69

538 20.2 (3.0) 30,258 156
538 33.7 (5.0) 31,486 233

538 53.9 (8.0) 30,000 264

25 33.7 (5.0) b48,372 303 0.53 100 b 100

178 33.7 (5.0) 100,000 161 0.28 25 50

316 33.7 (5.0) 100,000 146 0.26 57 41
650 33.7 (5.0) 100,000 90 0.16 10 25

_Apparent friction coefficient is calculated without accounting for bearing preload force, i.e., ta
is the measured friction force divided by the total dead weight load.

"Bearing test terminated due to high wear.

Temperature,
oC

TABLE III.-----CALCULATED FRICTION AND PRELOAD DATA

[Be_ ring length; 2.7 cm; diameter: 3.5 cm.]
Calculated

friction
coefficient _

Correlation

coefficient

Friction force

at no load,

N(gfo_)

Preload force

at no load,

N(gfo_,)

Preload

pressure, kPa
(psif

25 0.22 0.98 4.7 (475) 21.2 (2160) 7.2 (1.1)

204 0.25 0.98 2.3 (0.34)1.7(_173) '
1.9 (192)427 0.21 0.99

537 0.19 0.99 2.2 (225)

650 0.16 0.99

6.8 (692)
9.0 (914_)

1.2 (1184)

1.4(1388)2.2 (222)

3.0 (0.45)
3.9 (.0..57)

4.6 (0.67)

'Friction coefficient measured at loads ranging from 10.2 kPa (1.5 psi) to 31.2 kPa (4.6 psi).

_Preload pressure is defined as the preload force divided by the bearing surface area (nxLxD)
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Leaf foil _ ,,_ Bearing sleeve

al

(a)

Bump foil_ __ /-- Bearing sleeve

To I

(b)

Figure 1.-- Typical foil beadng test sleeves. (a) Leaf-

type foil beadng. (b) Bump-type foil bearing.

/-- Balance-screw

// hole, 12 places

O

O

/--- Undercut (optional)
I

/ _1
_'_ 35 / _ I

I/
/

/

i

.......?J....... 1

Figure 2.-- Test journal. Note undercut on outside

diameter of journal may be machined to accommo-

date a journal coating. Dimensions in mm.
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Figure 3.---Cross section SEM photomicrograph (backscattered) of PS 304.
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